أساسياتمقالات

مبادئ و أساسيات الكهرباء

هذه المقالة عبارة عن ورقة تلخيصية لأهم أفكار ومفاهيم الإلكترونيات و أساسيات الكهرباء كالتيار والمقاومة والاستطاعة وبعض العناصر الإلكترونية المهمّة و التي لا بد منها. كما يمكن الاطلاع بعد قراءة هذا المقال على جدول ببعض أهم العناصر العملية في الإلكترونيات للمبتدئين تحوي الاسم النظري والعملي والشكل النظري والعملي وأيضاً تحميل بعض الكتب عن الأساسيات وأهمها كتاب العناصر الإلكترونية: البنية-الفحص-التركيب للدكتور وليد بليد. والآن لنبدأ!

أساسيات الكهرباء في ورقة تلخيصية واحدة

 

المبدأ العام للتيار

تتألف الذرات عموماَ من نواة و مجموعة من الإلكترونات و تكون المواد الناقلة للتيار الكهربائي مؤلفة من نواة و مجموعة من الإلكترونات السطحية ذات ارتباط ضعيف معها و أي تحريض بسيط سيؤدي لترك مكانها و انتقالها إلى ذرة مجاورة و كذلك يحدث الشيء نفسه على مستوي باقي الذرات .

لكي نحرض الإلكترونات هذه للانتقال بشكل منظم و بكمية كافية نستخدم ما يسمى منبع طاقة أو ما يسمى مولد جهد ( فرق كمون).

يصطلح التيار الكهربائي عن حركة الإلكترونات و لكن بالجهة المعاكسة أي من (+) إلى (-) فحركة الإلكترونيات تكون من (-) إلى (+) .

المواد ، التيار ، الجهد المقاومة

تبعاً لإمكانية نقل الشحنات الكهربائية من عدمه يتم تصنيف المواد لثلاث أنواع : عازلة ( ليس لديها قابلية للنقل) – ناقلة ( لديها قابلية للنقل) – نصف ناقلة (قابلة للنقل و لكن بشروط كهربائية معينة) .

يصطلح لقياس شدة التيار المار في الدارة الكهربائية بـ ” شدة التيار current ” و يقاس بالأمبير A و عملياً تستخدم أجزاء هذه الواحدة في الدارات الإلكترونية ، مثلاً : أعظم قيمة تيار نظرية يمكن الحصول عليها من منفذ USB هي 500 ميلي أمبير أي 0.5 أمبير .

يصطلح لقياس عرقلة نقل المادة للتيار الكهربائي (بسبب عوامل فيزيائية كالشوائب أو شكل المادة أو حرارتها .. إلخ) بـ”المقاومة resistance ” و تقاس بالأوم Ohm و عملياً لكل شيء في هذه الحياة مقاومة فاللعوازل كالهواء مقاومة لا كبيرة جداً و للأسلاك النحاسية مقاومة صغيرة .

يصطلح للطاقة التي تحرض الإلكترونات للحركة من قطب لآخر بـ “الجهد الكهربائي ” و يقاس بالفولت و يمكن تشبيه تأثير الجهد في الدارة بالمضخة التي تحرض الماء .

URI

voltage_ex

قانون أوم

يعد قانون أوم ، القانون الأساسي الذي ستفهم من خلاله العلاقة بين التيار و الجهد و المقاومة بشكل رياضي و منطقي .
U=R.I
لغوياً : الجهد بين نقطتين هو جداء المقاومة بين هاتين النقطتين بالتيار المار بينهما .

مثال : ليكن لدينا مقاومة مقدرة بـ 100 أوم و يمر تيار كهربائي عبرها يقدر بـ0.02 أمبير ( 20 ميلي) ، احسب الجهد بين طرفيها ؟

U=100*0.02=2 V

مثال تطبيقي

بفرض لدينا الدارة الموصولة مع خرج المتحكم و الذي يعمل بجهد 5 فولت ، احسب قيمة المقاومة ؟

الحل :

يعد خرج هذا المتحكم كمولد جهد و عليه فإن أي دارة كهربائية يجب أن يكون مجموع الجهود الهابطة على العناصر في الحلقة (المسار من موجب المنبع إلى السالب (الأرضي) ) يساوي جهد المنبع (قانون) ، و حسب معطيات الدارة فإن الجهد على طرفي المقاومة يجب أن يكون 2 فولت و بما أن التيار معلوم حسب متطلبات الليد (العنصر الضوئي) فإن قيمة المقاومة
R=U/I = 2/0.02 = 100 أوم

ex1

ملاحظة : يسري التيار من قطب إلى آخر (من الموجب للسالب) و يرمز غالباً للسالب بالشكل الموضح و هو اصطلاحاً النقطة الأرضي و هي نفسها سالب البطارية أو المنبع .

قانون أوم بشكل عملي

كما هو موضح في الصورة فإن الجهد هو من يدفع التيار للمرور ( تحريض الإلكترونات ) و المقاومة هي من تحاول منع ذلك . و رياضياً يمكن تفسير ذلك بالقوانين الثلاثة المذكورة : إذ أن العلاقة بين التيار و المقاومة دوماً عكسية (العلاقة 2 و 3) بينما العلاقة بين الجهد من جهة و المقاومة و التيار متناسبة طرداً .

من هذا الكلام يجب أن نستذكر التالي دوماً : زيادة المقاومة تعني زيادة الجهد و نقصان التيار و يمكن استنباط الكثير من التراكيب اللفظية الأخرى .

ohm

مقسّم الجهد

يشتق من قانون أوم ، قانون مستخدم بكثر في الدارات الكهربائية و يسمى مقسّم الجهد ، و هو يعتمد على المبدأ : “التيار متساوي في عناصر الوصل التسلسلي و مجموع هبوطات الجهد على العناصر مساوي للجهد الكلي المطبق “

ملاحظة : دوماً الخرج يكون بين نقطة و الأرض (الجهد المرجعي) لأنه في قياس الجهود النقطة التي تحدد الموجبية من السالبية هي النقطة المرجعيه ذات الكمون الصفري التي تسمى اصطلاحاً الأرضي .

voltage_div

منابع الجهد

منابع الجهد هي أي شيء يولد لنا فرق كمون (جهد) يحرك الإلكترونات . و كأمثلة واقعية : بطارية – منفذ USB – خلايا شمسية … إلخ .

إن القيم لمنابع الجهد غير محدودة و لكن كقيم شائعة نصادفها في الدارات الإلكترونية : 5 فولت – 3.3 فولت – 9 فولت – 12 فولت .

يمكن الحصول على الجهد الذي نريده باستخدام منظمات الجهد مثل عائلة القطع إلكترونية 78xx حيث مكان xx يكون القيمة التي نريدها مثال : 5V 7805 .

أهم شيء أنثاء العمل مع دارة لها أكثر من مصدر جهد هي أن نقوم بتوحيد النقط السالبة (الأرضي) لهذه المنابع .

powersupply

مثال عملي

باستخدام مقسّم الجهد نريد أن نحقق تخاطب بين نظام يعمل بجهد 5 فولت و آخر يعمل بجهد 3.3 فولت .
نفرض قيمة عملية(أحد القيم الشائعة) لأحد المقاومات المجهولة و نحسب الأخرى .

R1=1K ohm
Vout = 3.3 volt (حسب المطلوب)
Vsupply=5 volt
R2=- (Vout*R1)/(Vout-Vsupply) =-(3.3*1K)/(3.3-5) = 1.94 K ohm = 2 K (أقرب قيمة عملية)

ex2

الاستطاعة و المقاومة

أحد المصطلحات الشائعة في الأنظمة الكهربائية هي الاستطاعة و لها معاني متعددة فيزيائياً إذا أن الاستطاعة المصروفة مثلاً في المصباح هي الإنارة .

رياضياً تعطى بالعلاقة التالية : P=U.I ، و في المقاومات العملية تختلف بحسب الاستطاعة التي يمكن تحملها و كقيم شائعة هناك مقاومات 1/4 واط و 1/2 واط و 1 واط و غير ذلك من التجزئات .

مثال : مقاومة 470 أوم/ربع واط ، اي أن قيمتها 470 و تتحمل تيار و جهد على طرفيها بما ينتج عن ضربهما قيمة لا تتجاوز الربع واط .

power

المكثفة

كمفهوم فيزيائي أي سطحين تتشكل بينهما مكثفة ، فبين يدنا الممدودة و الأرض مكثفة نظرياً . و أما كهربائياً فهي عنصر يتألف من لبوسين بينهما عازل و تخزن بينهما شحنات كهربائية مولدة فرق كمون بين اللبوسين .

تعتمد المكثفات على مبدأ الشحن و التفريغ في عملها ، إذا أنها خلال وصلها مع مقاومة و منبع جهد تشحن باتجاه جهد المنبع خلال فترة زمنية معينة .

يحدث شيء مشابه عند التفريغ و لكن يسعى الجهد بين طرفي المكثف نحو جهد الأرضي .

إن المكثفة كعنصر يعتبر عنصر ممانعة إذا أنه يمنع مرور التيار المستمر و يسمح بمرور التيار المتناوب و يمكن تفسير ذلك بالتالي :

إن ممناعة المكثفة تتألف من مركبتين : المركبة الأولى حقيقية و الثانية هي

Xc=1/(2*pi*F*C)

إن تردد التيار المستمر المثالي هو 0 و بالتالي تصبح ممانعة المكثفة لا نهائية و عند وجود تردد (مقلوب دور الإشارة خلال الزمن) فإنه تصبح للمكثفة قيمة ممانعة محددة .

capacitor1

capacitor2

الوصل التفرعي و التسلسلي

بهذه الطريقة يمكن تشكيل قيمة جديدة من مجموعة قيم سابقة . مع الملاحظة أن التيار في الوصل التسلسلي متساوي ، أما في التفرعي فإنه ينقسم لجزئين كل جزء يمر في فرع ليعود و ينجمع بعد انتهاء التفرع . بينما الجهد فهو معاكس إذن أنه متساوي في حالة التفرع و يتجزء في حالة الوصل التسلسلي .


ser_shunt

الديود

الديود diode هو العنصر الأساسي الذي يمثل مفهوم أنصاف النواقل في الدارات الإلكترونية و هو عنصر يتألف من مادتين : نوع n (ذات شحنات حرة سالبة) و نوع p (ذات شحنات حرة موجبة) .

يكون بين المنطقتين بالحالة العادية (دون تطبيق جهد خارجي منطقة خالية من الشحنات الحرة (منطقة عازلة) ، و عند تطبيق جهد كهربائي خارجي بين طرفي الديود تتقلص هذه المسافة حتى تنعدم و يتحول العنصر إلى ناقل تقريباً ، و تكون قيمة الجهد الذي يجب تطبيقه لكي “يفتح” الديود هو 0.7 فولت بالنسبة لأنصاف النواقل من نوع السيليكون .

إن أحد الأشكال العملية للديود هو الليد LED و هو هذا العنصر الذي يعطي ألوان مختلفة (أحمر – أصفر- … إلخ) و الذي يميزه عن الليدات العادية الأخرى أن استطاعته تتحول إلى ضوء .

diode1 diode2

Yahya Tawil

مهندس نظم مضمّنة مهتم بالعتاد مفتوح المصدر وولد في نفس العام الذي ولد فيه نظام تشغيل لينكس. يحيى هو مدير التحرير في عتاديات ويؤمن بأهمية المحتوى المكتوب المجاني والنوعي والعملي. خبرته في مجال النظم المضمّنة تتركز في كتابة البرامج المضمنة وتصميم الدارات المطبوعة والنظرية وإنشاء المحتوى.

‫2 تعليقات

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

This site uses Akismet to reduce spam. Learn how your comment data is processed.